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MINIMALITY OF HOROSPHERICAL FLOWS 

BY 

WILLIAM A. VEECH* 

ABSTRACT 

If N is the nilpotent constituent of an Iwasawa decomposition of the 
semi-simple group G (finite center and no compact factors), it is proved that N 
acts minimally on G/F for every uniform lattice F C_ G, generalizing theorems 
of Hedlund and L. Greenberg. 

1. Introduction 

The purpose  of the present  note is to prove  

THEOREM 1. I. Let G be a connected semi-simple Lie group with finite center 

and no nontrivial compact factor. Fix an Iwasawa decomposition, G = KAN,  

for G. If F is a discrete cocompact subgroup of G, the flow (N, G /F) is minimal. 

Recall that an Iwasawa  decomposi t ion  entails closed subgroups K, A, and N 

of G, where K is maximal  compact ,  A is a vector  group, and N is a simply 

connected nilpotent group. A N  is a solvable group with commuta to r  subgroup 

N. Further,  there are funct ions k : G --~ K, a : G --> A, and n : G --~ N such that 

for  each g @G, g =k (g )a (g )n (g ) ,  and g--~(k(g), a(g), n(g)) gives a dif- 

f eomorph i sm between G and K × A × N. 

A flow is minimal if each orbit  is dense. In the case G = SL (2, R) the natural 

choice of N is N = {(~ ~)[b ~ R}, and our theorem reduces  to the classical 

theorem of Hedlund [6] on the minimali ty of the horocycle  flow. Our approach  

to Theo rem 1.1 is mot ivated by [6] and by Greenberg ' s  paper  [5]. 

We remark  that little seems to be known about  the following question: for  

which subgroups H of G is it the case that (H, G/F) is minimal whenever  F is 

discrete and cocompac t?  In particular,  it does not seem to be known whether  G 

contains a one paramete r  subgroup H with this proper ty .  (If N is one 

dimensional ,  G is locally isomorphic  to SL(2 ,R) . )  
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2. The flow (G,G/N) 

Let Hi, H2 be closed subgroups of G. If x E G, the point xH2 E G]H2 has a 

dense orbit under H~ if and only if H,xH2 is dense in G. In other words, xH2 has 

a dense H1 orbit if and only if H,x has a dense H2 orbit (in H,\G). Thus, 

(H,, G/H2) is minimal if and only if (H2, G/H,) is minimal. This is the version 

for flows of Moore's duality principle [8], [3]. We will make use of it in two 

ways. First, if HI,H2 are such that there exist dense H~ orbits in G[H2, then 

there will also exist dense H2 orbits in G/HI. Secondly, to prove Theorem 1.1 it 

is sufficient to prove that (F,G/N) is minimal whenever F is discrete and 

cocompact.  

Because of the Iwasawa decomposition the homogeneous space G[AN can 

be identified with K. The action of G on G/AN goes over to the action 

Tg : K --~ K, g E G, defined by 

(2.1) T~k = k(gk ) 

where k: G--~K is as in Section 1. Restricting the action to F, there is also a 

natural flow (F, K).  By Moore's ergodicity theorem [8] and our assumption that 

G has no nontrivial compact factor, the flow (AN, G/F) has almost all orbits 

dense. Therefore (F, K)  has at least one dense orbit. This will be seen below to 

imply that every orbit is dense. 

Let  M = { m E K I m a = a m ,  a ~ A } b e t h e  centralizer of A in K. M i s a  

closed subgroup of K, and P = MAN is a closed subgroup of G in which N is 

normal. For this reason we have k (gin) = k (g)m, g ~ G, m ~ M. Therefore the 

action (2.1) of G on K and the action k---~km of M on K commute with one 

another. There is a natural flow (G,K/M) on the quotient space, and for F 

discrete and cocompact it is known that (F, K/M) is minimal ([2]; see also [4]). 

Let  k E K be a point with a dense F-orbit. Because the actions of F and M 

commute on K, each point kin, m E M has a dense F orbit. If k ' E  K, then 

because (F, K/M) is minimal and K is compact, there exists some m E M such 

that km is in the F orbit closure of k'.  Since km has a dense F orbit, k '  must 

have a dense F orbit. That is, (F, K)  is minimal. 

REMARK. If F is discrete, and if G [F has finite volume, then (F, K/M) (and 

(F, K))  are minimal. (Mostow [10].) 

Using the Iwasawa decomposition once more we identify G/N with K × A. 

Define a ( . ,  .): G x K---~A by a(g,k) = a(gk), and notice that 

(2.2) a(g~g~, k) = a(g~,g2k ) a(g2, k). 

It follows that the action Tg: K × A---~K x A defined by 
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(2.3) T~(k, a) = ( Tgk, a(g, k )a ) 

satisfies T~,T~2 = T~,~2. ( G , K  ×A)  is isomorphic with (G, G / N ) .  

The natural action of A on K ×A, given by multiplication in the A 
coordinate ((k, a) -~ (k, aa')), commutes with T~, g E G. Therefore, if F is any 

subgroup of G, a point (k, a) E K × A has a dense F orbit if and only if all 

points (k, a '), a '  E A, have dense F orbits. In case F is discrete and cocompact, 

Moore's ergodicity theorem implies almost every point of G/F has a dense N 

orbit, and therefore there are points in K × A which have dense F orbits. Thus, 

there exists a point k ~ K such that for every a E A, (k, a) has a dense F orbit. 

3. Mostow's theorem 

In the present section G is allowed to have compact factors and infinite 
center. Let 1~ be the Lie algebra of G. We recall that a subalgebra ~) C_ (~ is a 

Cartan subalgebra if ~) is a maximal abelian subalgebra of @, and if for each 

X ~ (9 adx(Y) = IX, Y] is a semisimple endomorphism of ~ (i.e., diagonaliza- 

ble over C). If ~ is a Cartan subalgebra of 1~, and if H C_ G is the group of 

elements which in the adjoint representation leave ~) pointwise fixed, H is 

called a Cartan subgroup. There exists a Cartan subgroup H such that 

A C_HC_M,A. 

THEOREM (Mostow [9]). Let G be a connected semisimple Lie group, and let 

F be a discrete cocompact subgroup of G. If  H is a Cartan subgroup of G, there 

exists g E G such that gFg -~ n H is a cocompact subgroup of H. 

REMARK. Mostow's theorem has been extended by Prasad and Raghunathan 

to the case of discrete subgroups F for which G/Fhas finite volume ([ll]). 

4. Proot of Theorem 1.1 

For the remainder of the paper G is a connected semi-simple Lie group with 

finite center and no nontriviai compact factors; F is a discrete cocompact 

subgroup of G, and H is a Caftan subgroup such that A C_ H C_ MA. 

We claim it is enough to prove Theorem 1.1 under the additional assumption 

that F n H is cocompact in H. For by Mostow's theorem there exists g @ G 

such that gFg -~ has this property, and if we known gFg-~hN is dense in G for 

all h E G, it will be true that F x N  is dense in G for all x E G. 

We remark that because H _~ A, F n M A  is cocompact in M A  if r o H is 

cocompact in H. 

LEMMA 4.1. With notations and assumptions as above, let k'  E K, m'  E M. 
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There exist m E M and a sequence {3.} in F such that (i) limn~®k(3'.m') = 

k'm, and (ii) {a(3'nm')} is a bounded sequence in A. 

PROOF. By the minimality of ( F , K )  there exists a sequence {3"} in F such 

that lim, o ~ k ( 3 , ' m ' ) - - k ' .  Since F A MA is cocompact  in MA, there exists a 

sequence {3'"} in F N M A  such that a(3"m')3"" is bounded in MA. Write 

3""= m"a,'¢ m " ~ M ,  a " E A .  Setting 3', = 3"3'", we have 

T~(m' ,e)=(k(3",m') ,  a(3",m')) 

(4.2) = (k(3"m"a"m'), a(3"m"a"m')) 

= (k(3")m"m', a(3")a"). 

Passing to a subsequence if necessary,  we may suppose m "m ' - *  m for some m, 

and so the first coordinate in (4.2) converges to k'm. Since a ( 3 " ) a " =  

a(3''m')3""(m") -~, and since {a (3' 'm ')3""} is bounded by our choice of {3'"}, the 

sequence {a (3",m')} is bounded in A. The lemma is proved. 

LEMMA 4.3. With notations and assumptions as above, if m ' E  M and 

a' E A, the point (m', a') has a dense F orbit in K x A. 

PROOF. There exists a point k ' E  K such that for all a E A, ( k ' , a )  has a 

dense F orbit. Since the action of F on K commutes  with the right action of M, 

(k 'm,a)  has a dense F orbit for  all m ~ M ,  a CA.  Let  {3,,} be a sequence 

satisfying (i) and (ii) of Lemma 4.1. Since a ( y , m ' )  is bounded in A, we may 

choose a subsequence if necessary,  and assume l im,~a(3",m')= a exists. 

Thus, ( m ' , e )  has (k 'm,a)  in its F orbit closure, and therefore  ( m ' , e )  has a 

dense F orbit. It follows that (m' ,  a)  has a dense F orbit for  all a E A. 

REMARK. The discussion so far applies equally well to discrete subgroups F 

such that G/F has finite volume. This is thanks to the Prasad-Raghunathan 

extension of Mostow's  theorem mentioned earlier. The final stage of our 

argument will consist of proving that every  point of K x A has some point 

(m, a)  (m E M) in its F orbit closure. For  this it is definitely necessary that F be 

cocompact .  

Let  k, a, n ÷ be the Lie algebras of K, A, N respectively,  and let a* be the 

(real) dual space to a. An element )t E a* is a root if the space 

g~ = {X E g I [ Y , X ]  = )t(Y)X, Y ~ a} 

has positive dimension. The set, A, of roots is finite, and there exists a linear 

ordering of a* (compatible with the vector  space structure) such that if 
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A + = {h C AIA > 0},then n + = 2,~A ÷ g~. If  A- = {A E A[A < 0},then n -  = E,~A-g* 

is a Lie subalgebra  of g and there is a direct sum decomposi t ion  g = 

n + g O +  n +, where  gO further  decomposes  as gO= m + a ,  m C_ k, m the Lie 

algebra of the group M defined earlier. N = exp (n- )  is dif feomorphic  to an 

open dense subset  of  K / M  under  the map x---}k(x)M, x E N- .  We note for  

later re fe rence  that adeN-  = N -  for  g C M and g C A. Also for  g E A, say 

g = e x p ( X ) ,  the der ivat ive of ad~ in the direction of any vec tor  Y E g~ is 

exp (h (X)) Y. There fore  

(4.4) 
lim ad~h = e 

A ( X ) ~ - ~  
AEA 

e x p ( X ) = g  

uniformly on compac t  sets of  h in N . For  these facts  and others cited below, 

see [12]. 

Let  B C_N be a compac t  neighborhood of e. By the above  ~ = 

{k (b )MIb  E B} is a compac t  neighborhood of eM in K/M.  Now fix k ' E  K, 

and define F~ (k ')  = {y E F[ k (yk ' )M E ~ }. Since (F, K / M )  is minimal, F~ (k') 

is " lef t  relatively dense ."  This means there exist y~,..-,7~ E F such that 

y~F~(k')  U ... U y p F ~ ( k ' ) =  F. Since F is cocompac t ,  there exists a compac t  

set C '  C_ G such that C ' F  = G, and so if we set C = C'T~ U ... U C'Tp, C is 

compact ,  and C F ~ ( k ' ) =  G. 

Since a" G-->A is continuous,  the set Ao = {a(gk)lg E C,k E K}is  compac t  

in A. Define A ~ ( k ' ) =  {(a(vk ' )  I 7 E F~(k')}. Given any g E G, write g = cv,- 

c C C, y C F~(k ' ) .  Then 

a (gk') = a (cvk') 

(4.5) = a (ck (vk'))a (7k') 

C AoA~ (k') .  

Denote  by " log"  the inverse to the exponential  map of a onto  A. We define two 

subsets  of a by  
ao = log Ao 

a~ (k')  = log A ~  (k') .  

By (4.5) a = ao + a~ (k') .  

Le t  II" II be a norm for  a. We use the dual norm on a*  and the same symbol.  

Let  a = maxvc,oIIYll. Then for  every  A C a *  and X C a  there exists X ' E  

a~(k') such that I IX-X'II<=a and IA(X) -A(X ' ) I_ - -<a  IIA II. 
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Let  0 < T < ~. T will be specified later. Choose X E a with A ( X ) >  3T, 

A E A - .  There exists X ' E a ~ ( k ' )  such that I Ix -x ' l l_ -<s ,  and therefore  

A ( X ' ) > 3 T - I [ A  [Is, X ~ A - .  Assume now that T > I A  [Is, ;t ~ A - .  We have 

(4.6) A(X')  > 2T  (A ~A - ) .  

By definition there exists 7 E F  such that k(3"k')M E ~ and log a(3"k') = X ' .  

Because F n MA is cocompact  in MA, there exists D = D ( F ) <  oo such that 

F n MA contains some 8 = rn,a~ with Illog a, + X '  II ~ D. If, as we now assume, 

T > D II, A A-, and if X, = log a,,  then 

(4.7) A (X,) < - T (A C A-). 

Now let U be an arbitrary neigborhood of e in N - .  We shall prove the point 

(k ' ,  e) has in its F orbit a point of the form (rnk (u),: a (u)a2) for  some u E U and 

a2 E A with Hlog a~l[----2D. Letting U decrease to the identity, it follows that 

the orbit closure of (k ' ,  e) contains a point (m, a) ,  m E M ([[log a 41--< 2D), and 

therefore  (k' ,  e) has a dense orbit. This is all that is needed to complete  the 

proof of Theorem 1.1. 

Define Bo C_ N -  by Bo = { m b m - ' l m  E M, b E B}. (Recall that B was a fixed 

compact  neighborhood of e in N .) By (4.4) there exists To such that if T -> To, 

and if (4.7) holds, then 

(4.8) a~Boa T' C_ U. 

We assume T _-> To (as well as T _-> I[x Ils, T ~ D IIA II, ~ e A-). 
We have selected two elements of F. The first, 3', has the proper ty  that 

3' E F~(k ') ,  and log a (3 ' k ' )=  X '  satisfies (4.6). The second, 8 = m~a,, satisfies 

Itlog a, + X '  II =< D, and X, = log a, satisfies (4.7). It will develop that TsT~,(k', e) 

has the desired form (mk(u) ,  a(u)a2), Illog a2 II 2D, u E U, provided, as we 

now assume, I[loga(b )ll<- D, b ~ B. 
To say that 8 E F ~ ( k ' )  is to say there exist m z E M ,  b E B ,  and bo = 

m ~'brnz E Bo such that 

k(3"k') = k(b )mz 

= m2m~'k(b)m2 
(4.9) 

= mzk(m~lbm2) 

= mzk(bo). 

By (4.8), u = a~boa~' E U. Using (4.9) we calculate k(83'k'): 
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(4.10) 

Let a2 = a(bo) - 'a ,a ( ) , k ' ) .  

Using (4.9) once more, 

(4.11) 

HOROSPHERICAL FLOWS 

k (6yk') = k (m, at m 2k (bo)) 

= m,m2k(a~k(bo) )  

= m ,m2k(a ,bo )  

= m ~ m 2 k ( a , b o a ;  ~) 

=ink(u)  (m =m,mO. 

We have 
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from above II log a2 II = II x ,  + x '  II 2 0 .  

a (6yk ' )  = a ( m , a , k  ( ) , k ' k ) )a  ( 'yk') 

= a (a , k (bo ) )a ( ' yk ' )  

= a ( a , b o a ~ ' ) a ( b o ) - ' a , a ( y k ' )  

= a(u)a2. 

Collecting results, (4.10) and (4.11) imply 

T~T, (k ' ,  e) --- ( i nk (u ) ,  a (u)a2)  

as desired. Theorem 1.1 is proved. 

N o t e  A d d e d  in Proof.  Since this paper was written we have established 

Theorem 1.1 with "minimal" replaced by "uniquely ergodic". 

REFERENCES 

1. H. Furstenberg, Apoisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 
335-386. 

2. H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. I08 (1963), 
377-428. 

3. H. Furstenberg, "The unique ergodicity of the horocycle flow," Recent Advances in 
Topological Dynamics, ed. Anatole Beck, Springer-Velag 1973, 95-115. 

4. S. Glasner, Compressibility properties in topological dynamics, Amer. J. Math., to appear. 
5. L. Greenberg, "Discrete groups with dense orbits," Flows on Homogeneous Spaces, L. 

Auslander, L. Green and F. Hahn, Princeton University Press, Princeton, 1963, 85-103. 
6. G.A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530-542. 
7. C. Moore, Compactifications o[ symmetric spaces, Amer. J. Math. 86 (1964), 201-218. 
8. C. Moore, Ergodicity o[flows on symmetric spaces, Amer. J. Math. 88 0965), 154-178. 
9. G. D. Mostow,lntersections of discrete subgroups with Cartan subgroups, J. Indian Math. 

Soc. 34 (1970), 203-214. 
10. G. D. Mostow, Strong Rigidity o[ Locally Symmetric Spaces, Princeton University Press, 

Princeton, 1973. 
I 1. G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, 

Ann. of Math. 96 (1972), 296-317. 
12. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I, Springer-Velag, New 

York-Heidelberg-Berlin, 1972. 

DEPARTMENT OF MATHEMATICS 
RICE UNIVERSITY 

HOUSTON, TEXAS, U.S.A. 


